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Spatio-temporal dynamics of substorms during
intense geospace storms

J. Chen, A. S. Sharma, and X. Shao

Abstract: The nonlinear dynamical models of the coupled solar wind-magnetosphere system derived from observational
data are used to yield efficient forecasts of the magnetospheric conditions. A correlated database of solar wind and
magnetospheric time series data for the last solar cycle near its peak (year 2001) is compiled and used to model the
magnetospheric dynamics under strong driving. The dynamical models of the magnetosphere during superstorms developed
with this database are used to forecast the geospace storms of October-November 2003 and April 2002, and yields
improved forecasts of the intense storms. A new technique which consider the contributions of the nearest neighbors
weighted by factors inversely proportional to the distances in the reconstructed phase space yields better predictions,
especially during the strongly driven periods. Also the time series data of the distributed observations are used to develop
spatio-temporal dynamics of the magnetosphere using phasespace reconstruction techniques. This nonlinear model is used
to study the spatial structure of geomagnetic disturbancesduring intense geospace storms. The ground magnetometer data
are from the two chains of stations: CANOPUS (13) and IMAGE (26). This new data set, with 1-minute resolution, is
used to study the spatio-temporal structure, including thecoupling between the high and mid-latitude regions. From the
point of view of space weather the predictions of the spatialstructure are crucial, as it is important to identify the regions
of strong disturbances during intense geospace storms
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1. Introduction

The solar wind-magnetosphere coupling is enhanced when
the interplanetary magnetic field (IMF) turns southward, lead-
ing to geospace storms and substorms. The magnetosphere is
a highly dynamic system under these conditions. The Earth’s
magnetosphere is a non-autonomous dynamical system, driven
by the solar wind. Studies of the magnetospheric dynamics us-
ing models derived from the correlated database of the solar
wind - magnetosphere system have enhanced our understand-
ing of the complex behavior of the magnetosphere. The advant-
age of this approach is the ability to yield the dynamics, inher-
ent in observational data, independent of modeling assump-
tions. There has been considerable progress in the modeling
and forecasting of the solar wind-magnetosphere coupling as
an input-output system by linear and nonlinear approaches.

The linear prediction filter technique was used to obtain the
response time of the magnetosphere from theAL−V Bs data-
base [3][hereafter referred to as the BBMH dataset]. This data-
base spans the period from November 1973 to December 1974
and has 2.5 min resolution. The response functions from this
analysis have been used to interpret how the magnetospheric
response to the solar wind driver with changes in the activ-
ity level, indicating nonlinearity. These response functions ex-
hibited two time scales, corresponding to the directly driven
and loading-unloading processes. The modeling of magneto-
spheric substorms as a low dimensional system using the time
series data of the electrojet indices,AL or AE, to reconstruct its
dynamics has shown its low dimensionality and the nonlinear
nature of the magnetosphere [6] [7] [8] [17]. The reconstruc-
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ted phase space show clear evidence that the dynamical sys-
tem follows a pattern in the reconstructed phase space [9] [10].
This implies that the dynamics of the magnetosphere is pre-
dictable and this recognition has stimulated the study of fore-
casting substorms [18] and storms [14]. Vassiliadis [18] used
the local-linear technique on the BBMH dataset, with the solar
wind convective electric fieldV Bs as the input and theAL in-
dex as the output, and obtained good predictions. These predic-
tions gave strong evidence that nonlinear models can be used
to develop accurate and reliable forecasting tools for space
weather. Recent studies using time series data have shown that
the coherence on the global magnetospheric scale can be ob-
tained by averaging over the dynamical scales. A model for
the global features can be obtained by a mean field technique
of averaging outputs corresponding to similar states of thesys-
tem in the reconstructed phase space [12] [13]. With such a
mean-field model, accurate iterative long-term predictions can
be obtained, as the model parameters need not be changed dur-
ing the prediction.

Recently, some dynamical models incorporating the spatial
structure have been studied beyond the global indices. The suc-
cessful standard nonlinear dynamic approach using theAL −
V Bs coupling has been generalized to consider the dynamical
evolution of spatial structure of magnetic perturbation. Val-
divia [15] [16] studied and modeled the evolution of the spa-
tial structure of the middle and high latitude current structure
by a set of mid- and high-latitude ground magnetometers dis-
tributed at different longitudes around the Earth, providing the
representation of the effect of the currents at the ground. A2D
dynamical solar wind driven model for the evolution of the spa-
tial structure of the mid-high latitude magnetic field perturb-
ations was generated from IMAGE chain of magnetometers.
The prediction model gives some new and interesting results.

During April 2002 and October-November 2003, nearly 2
years after the last solar maximum, three extremely big G5
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geospace storms occurred, an extreme geomagnetic storm on
the NOAA space weather scale that runs from G1 to G5. These
three G5 extreme geomagnetic storms were driven by the solar
wind with the southward IMF of -58.3 nT, -32.03 nT and -
53.02 nT, measured by ACE, and these led to theAL index val-
ues of -2778 nT, -1851 nT and -2499 nT, respectively. These
three intense geospace storms provide interesting opportunit-
ies for the study of nonlinear phase space reconstruction under
extreme conditions. In order to model and predict such intense
storms, a correlated database of the solar wind and magneto-
spheric variables of the year 2001, which is close to the peak
period of 11-year solar cycle, was compiled [4].

To study the spatial structure as observed by the latitudinal
chain of magnetometers, CANOPUS and IMAGE, the ground
magnetometer measurements from 26 stations of IMAGE array
and 13 stations of CANOPUS array for year 2002 with resolu-
tion of 1 minutes are compiled. The correlated solar wind input
is V Bs, as in the earlier studies.

Fig. 1. The correlated solar wind induced electric fieldV Bz

(panel a) and the auroral electrojet indexAL (panel b) for
81 intense storm intervals during year 2001. The geomagnetic
activity in these intervals during the peak of the last solarcycle is
very high and correspond to strong driving by the solar wind.

2. Correlated Database of Solar Wind-
Magnetosphere Coupling under Strong
Driving

During the period of maximum solar activity, the magneto-
sphere is strongly driven and the year 2001 near the last solar
maximum is chosen for compiling a database for such an epoch.
This database contains solar wind flow speedV, the north-
south component of the IMFBz and theAL index for the 11
months of 2001 (January to November). The solar wind data
for 2001 were compiled for a set of data intervals, each defined
as any continuous data longer than 12 hours with no more than
half-hour data gap. The dataset contains 81 intervals with peri-
ods 12 hours to 3 days long. During January-November 2001,

there were 81 such data intervals containing 33931 data points
at 5-min resolution, satisfying the above conditions. The cor-
related solar wind induced electric fieldV Bz and the auroral
electrojet indexAL for 81 intense storm intervals during year
2001 are shown on Figure 1. During this period of strong solar
activity, intense substorms and storms were triggered withhigher
frequency. If we define a strong geomagnetic storm as having
Dst less than -100 nT, we find that there are 12 such storms
in 2001 compared with 4 such storms in 1995 and 1 in 1996.
Thus the 2001 database is appropriate for studying the prop-
erties of geomagnetic activity during a solar maximum. The
selected 81 events are separated into 3 activity levels by the
average values ofV Bs: medium (〈V Bs〉 ≤ 1500 nT km/s),
high (1500 nT km/s≤ 〈V Bs〉 ≤ 2500 nT km/s), and super (
〈V Bs〉 ≥ 2500 nT km/s). To model a specific event, we choose
the corresponding activity level to which it belongs and useit
as a reference database.

During 2002-2003 there were three intense storms, occur-
ring in April 2002, October 2003, and November 2003. The
solar wind data from ACE through CDAWEB and the corres-
ponding geomagnetic field indexAL were compiled for these
storms.

The magnetic perturbations from the 39 magnetometers of
IMAGE and CANOPUS of year 2002 are used to visualize and
predict the spatial evolution of the current systems. This data-
base contain solar wind key parameters from ACE and mag-
netic perturbation from ground magnetometers with 1 minute
resolution. We have both the magnetic perturbationHx, geo-
graphic north, andHy, geographic east, of the individual mag-
netometer. A valuebase, defined as the average value of the 15
quietest days in the whole year 2002, is subtracted from each
component at each magnetometer.

We partition the dataset by mapping the magnetometer meas-
urements in the universal time and the magnetic latitude to a
2D grid of magnetic local time and magnetic latitudeλ [16].
Such mapping is possible because the perturbation is measured
at the different location in the magnetosphere as the Earth ro-
tates.

3. Nonlinear Dynamical Modeling Using
Correlated Data

3.1. Input-Output Modeling of the Magnetosphere
The magnetosphere has been shown to exhibit the features

of a nonlinear dynamical system, and its global features have
been modeled by a few variables [2]. This remarkable property
arises from the inherent property of phase space contraction in
dissipative nonlinear systems. A dynamical input-output model
can be constructed based on local-linear filters, which repres-
ent the relationship between the inputI(t) and the outputO(t)
of the system.

The time delay embedding technique is an appropriate method
for the reconstruction of the phase space and for obtaining its
characteristic properties [5] [11]. In this technique, am com-
ponent phase vectorXi is constructed from this time series
x(t) as:

Xi = {x1(ti), x2(ti), · · · , xm(ti)}, (1)
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wherexk(ti) = x(ti − (k − 1)T ) andT is a time delay. If the
embedding procedure is properly performed, the dynamical at-
tractor underlying the observed time series will be completely
unfolded, and the constructed states have one to one corres-
pondence with the states in the original phase space. Appropri-
ate values of the time delayT and the embedding dimension
m can be obtained by using techniques such as the average
mutual information and the correlation integral [1].

In an input-output model of the solar wind-magnetosphere
system during substorms, the solar wind convective electric
field V Bs is commonly used as the input and the geomagnetic
activity indexAL or AE as the output. Thus the input-output
vector in the2m dimensional embedding space can be con-
structed as

Xi = (I1(ti), · · · , IMI
(ti), O1(ti), · · · , OMO

(ti)), (2)

whereMI = MO = m. The 2m-dimensional state vectorXi

at t = t1, t2, · · · tN , can now be used to construct a trajectory
matrix for the dynamics of the system as:

X =









I1(t1) · · · Im(t1) O1(t1) · · · Om(t1)
x1(t2) · · · Im(t2) O1(t1) · · · Om(t1)

...
. . .

...
...

. . .
...

I1(tN ) · · · Im(tN ) O1(tN ) · · · Om(tN )









(3)

whereN is the number of vectors. ThisN ×2m matrix con-
tains all the dynamical features of the system contained in the
data and yields its evolution in the reconstructed phase space.

3.2. Local-Linear and Weighted Mean Field Filters
The reconstructed phase space obtained from time series

data has one-to-one correspondence with the states in the ori-
ginal phase space, thus making the prediction of the dynamical
system possible. The main idea of this method is the use of the
trajectories in the neighborhood of the state at time t to predict
its location at the next time step. Knowing how the neighbor-
ing trajectories evolve, the location of the current statex(t) at
next time stept + T can be predicted. The procedure is loc-
ally linear but is essentially nonlinear as the features of the
neighboring trajectories are taken into account by considering
a small neighborhood.

Given the current state, the states similar to it in the training
set are selected as the first step. The similarity of the current
state with any other state in the known data, which is referred
to as the training set, is quantified by the Euclidean distance
between them in the embedding space. The states within a spe-
cified distance of the current state are referred to as the nearest
neighbors (NN ). The prediction using the mean field approach
have been used with the correlated BBMH database of solar
wind and geomagnetic activity time series [12] [13].

On+1 =
1

NN

NN
∑

k=1

Xk (4)

In the mean field model, all the states in the specified neigh-
borhood, theNN nearest neighbors, were used to obtain the
center of mass by a simple averaging procedure. It is how-
ever the prediction can be improved if the states close to the
current state contribute more than those farther away. Based

on this recognition, a new filter based on the mean field filter
is proposed to improve the accuracy and efficiency of predic-
tions. This weighted filter takes into account the distance of
the nearest neighbors. a set of weight factorsg which depend
inversely on the distances of each nearest neighbor from the
mass center is introduced as

gk =
1

d2
k

/

NN
∑

i=1

1

d2
i

(5)

wheredi is the Euclidean distance of theith nearest neighbor
from the center of mass. The predicted output that includes this
weighting of the neighbors is

On+1 =
1

NN

NN
∑

k=1

Xk • gk, (6)

The prediction accuracy is quantified by normalized mean
square error (NMSE):

η =
1

σo

√

√

√

√

1

N

N
∑

i=1

(Oi − O∗

i )2, (7)

whereOi andO∗

i are the observed and predicted data, respect-
ively, andσo is the standard deviation ofOi.

Fig. 2. The weighted mean-field predictions for storms: (a-b):
November 19-26, 2003, (c-d): October 26-November 03, 2003,
and (e-f): April 15-24, 2002. The left panel isV Bz , and the right
panel is the realAL (solid line) and predictedAL (dotted line).
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4. Modeling and Prediction during
Superstorms

4.1. October-November 2003 and April 2002
Superstorms

The weighted mean field filter is used to model the solar
wind-magnetospherecoupling during the superstorms of October-
November 2003 and April 2002. In order to obtain the optimal
nonlinear weighted mean field filter for superstorms, the fol-
lowing steps are adopted. First, the activity level of the solar
wind driving is computed by averaging the southward com-
ponent ofV Bz. Then both the input (V Bz) and output (AL) of
the time interval corresponding to the same activity level of the
magnetospheric activity from the 2001 database are selected
as the training set. For these three superstorms, the super level
( 〈V Bs〉 ≥2500 nT km/s) of the 2001 database is selected.
Second, using all of the selected data interval of input (V Bz

) and its corresponding (AL) as a training set, the indexAL
is predicted for the superstorms using the weighted mean filter
discussed above. The normalized mean square error (NMSE)
is used to determine the optimal parameters for the prediction
by comparing the predicted and actualAL. In this model, the
time resolution (5 min) of the training set is chosen as the time
delayT , and the other three free parameters are used to min-
imize the NMSE. The first two parameters are the embedding
dimensionsMI andMO, and as in the previous studies, we
takem = MI = MO, which determines the vector length in
the phase space to be2m. The third parameter is the number of
nearest neighborsNN . A wide range of values of these para-
meters are used in the model to obtain the optimal predictions
and these are shown in Figure 2. The solar wind convective
electric filed (−V Bz) for these events are shown on Figure 2a,
2c and 2e. There is a sudden enhancement of the solar wind
convective electric field in the early part of these events and
this drives the geospace storms. The predicted and realAL are
plotted in the panels (b), (d) and (f) of Figure 2. The solid lines
represent the realAL and the dotted lines represent the pre-
dictedAL. Iterative predictions of the November 2003 storm
were carried out for 7500 minutes (125 hours) with a minimum
NMSE of 0.792 and the maximum correlation coefficient of
0.758. Also for the predictions of the October 2003 and April
2002 storms, yielded a minimum NMSE of 0.911 and 0.748, a
maximum correlation coefficient of 0.714 and 0.831, respect-
ively. In these figures the model output closely reproduces the
large-scale variations ofAL and captures some of the most ab-
rupt changes. Also preceding theAL minima, there are sharp
jumps, corresponding to the abrupt enhancements of the north-
ward IMF. However, the southward IMF is the main driver of
the geomagnetic storms, and it is not clear how well the model
captures the effects of positive IMF enhancements.

In the earlier studies using the BBMH dataset [12] [13] [18],
a major part of the dataset was used as the training set and the
predictions were made for the remainder of the dataset. Con-
sequently there were many similar states in the phase space.
However for the two superstorms of 2003, it is hard to find so
many similar big substorms in the available databases, suchas
that of year 2001. The nearest neighbor searches in these cases
yields only a few states close to the superstorms. If we use a
large number of nearest neighbors and a simple arithmetic av-
eraging, the output of the model is smoothed over these and

cannot capture the peak of the substorms. In such cases the
weight factorg plays an important role and the averaging pro-
cedure yields improved predictions.

4.2. Comparison of Predictions using Bargatze [3] and
Year 2001 databases

In order to compare the predictions using different databases
as the training set, the storms of November 2003 are predicted
using the BBMH database. To highlight the differences clearly,
the periods of quiet and low activity before and after the main
phase of the storms are neglected. The results of the storm of
November 2003 are shown in Figure 3(a). It is clear that the
peaks ofAL cannot be predicted, mainly due to the absence of
similar strong substorms in the BBMH database. The overall
predictions have an NMSE of 0.847 and a correlation coef-
ficient of 0.772. The predictions of for the same period using
the year 2001 database and the combined database of year 2001
and BBMH are shown on Figure 3(b) and 3(c), respectively.
A comparison of these predictions, Figure 3(a)-(c), shows the
substantial improvement with the inclusion of the year 2001
database, either as the complete training set or as a part of a
bigger training set. This is clearly due to the presence of many
events in the year 2001 database similar to those in the Novem-
ber 2003 storm. In order to compare the predictability for dif-
ferent segments of the database, the November 2003 event was
separated into smaller segments of 250 min or 50 data points
each. The comparisons of the NMSE for the different segments
are shown in Figure 3(d). It is clear that the NMSE for the data
segments with large values ofAL in the 2001 dataset are much
smaller than those of the similar segments in the BBMH data-
set.

The predictions and the NMSE for the storm of April 2002,
a weaker storm compared to the November 2003 storm, are
shown in Figure 4(a)-(c). The predictions are found to be al-
most the same when the three databases, viz. BBMH, year
2001, and the two combined, are used as the training sets. Also
the NMSE values for 250 min intervals are shown in Figure 4
(d), and that NMSE have similar values in most of the seg-
ments.

In the case of the April 2002 storm, all the NMSE values
obtained using different databases are similar, indicating that
the BBMH and the 2001 databases yield similar predictions.
However the 2001 database is a better choice for the October-
November 2003 storms, as the comparisons in Figures 3 and 4
indicate. The remaining quieter periods of the October-Novem-
ber 2003 and the whole of April 2002 storms can be predicted
very well using both the BBMH and Year 2001 databases as
the training sets.

The analysis of the storms with different intensities and us-
ing different databases indicates that the geomagnetic response
during the solar minimum and solar maximum periods have
similar predictability. The 2001 and BBMH databases can thus
be considered to complement each other. The combination of
these two databases under different solar activities provides a
comprehensive database for improved modeling and prediction
of magnetospheric activity under a wide range of solar wind
conditions.
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Fig. 3. The weighted mean field predictions on November 2003
storm using the BBMH, Year 2001 and combined databases. The
solid line is realAL data, dotted line is predicted results. (a)
BBMH database (b) Year 2001 database (c) Combined database
(d) NMSE for 250-minute segments, the solid line represent
BBMH database, dotted line represent Year 2001 database, dashed
line represent combined database.

4.3. Spatial Structure of the High Latitude Magnetic
Perturbations

The latitudinal chain of the magnetometers samples the spa-
tial structure as the Earth rotates. So a full 2D dynamical model,
driven by solar wind, of the spatial structure of the magnetic
perturbations can be constructed. From such a 2D model, with
a proper simultaneous solar wind selection, the localized solar
wind-magnetic perturbation model can be established, and the
prediction of locally region, instead of global indices, can be
estimated.

The ground magnetic perturbations from 26 IMAGE and 13
CANOPUS are used to construct the 2D mapping during the
April 2002 storm time. All of the station measurements are
partitioned in a 2D grid that contains 24 hourly bins in mag-
netic local time and 26 or 13 bins, corresponding to the ground
stations in IMAGE or CANOPUS array. Because of the sim-
ultaneous measurement of each magnetometer with same local
time and different latitude, the high latitude magnetic perturb-
ation can be seen on the average mapping both in magnetic
latitude and local time as:

< H(λ, ξ) >=
1

N

N
∑

i=1

H(λ, ti) (8)

for Hx andHy as shown at Figure 5 and Figure 6. Because
the Hx and Hy are related to the east-west and south-north
components of the current system. The Fig 5(a) and Fig 6(a)
show a clear pattern of the westward and eastward currents
during April 17-21, 2002, corresponding to the negativeHx in
the midnight sectors and positiveHy in the noon sectors.

The basic structures of the high latitude magnetic perturb-
ation are shown on these 2D averaged locally measurements.
We are interested in the study this spatial dynamical systemby
considering the proper spatially dependent time delay between
the onset solar wind and response of the magnetosphere re-
sponse on different location.

Fig. 4. The weighted mean field predictions on April 2002 storm
using the BBMH, Year 2001 and Combined databases. The solid
line is realAL data, dotted line is predicted results. (a) BBMH
database (b) Year 2001 database (c) Combined database (d)
NMSE for 250-minute segments, solid line represent BBMH
database, dotted line represent Year 2001 database, dashedline
represent combined database.

5. Conclusion

The modeling of magnetospheric response to strong driving
by the solar wind is important not only for a better understand-
ing of the solar wind - magnetosphere coupling and but also
for developing our capability to forecast extreme conditions.
During the last solar maximum there were many intense geo-
space storms and the existing models had limited success in
forecasting these accurately. In order to develop better mod-
els and improve forecasting capability, a correlated database
of the solar wind and the magnetospheric response is compiled
for the year 2001 during the peak of the last solar cycle. In
this database, the solar wind variable is the induced electric
field and the magnetospheric response is the auroral electrojet
index AL. This database is particularly well-suited for model-
ing using the phase space reconstruction techniques. The mean
field approach to the modeling of the global magnetospheric
dynamics [12] [13] is used to develop nonlinear dynamical
models of the magnetospheric response from the year 2001
database. These predictions are then compared with the models
based on the Bargatze [3] database, corresponding to a solar
minimum period (1973 - 1974). The predictions for the big
storms of October and November 2003 and April 2002 yields
improved forecasts, especially for the intense storms.

The mean field approach has the advantage of yielding it-
erative predictions without having to fix model parameters,in
particular the number of nearest neighborsNN and the dimen-
sion of the embedding spacem [12] [13]. However during in-
tense storms the number of similar events is usually small and
this limits the ability to predict big events. In order to improve
the predictability in such situations the mean field approach is
modified by assigning weights to each of the nearest neigh-
bors. These weights are inversely proportional to the square of
the distance and leads to improvements in the predictions. The
forecasting capability of the model is quantified in terms of
a normalized mean square error (NMSE) computed from the
predicted and actualAL values.

The two dimensional high latitude magnetic field perturb-
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Fig. 5. The average value ofHx andHy components measured
by IMAGE in both magnetic latitude and local time over April
17-21, 2002.

Fig. 6. The average value ofHx andHy components measured
by CANOPUS in both magnetic latitude and local time over April
17-21, 2002.

ations show the current structure of the magnetosphere. The
solar wind driven model for these spatial variations can be
derived from measurements of ground magnetometer chains
after consider the proper time delay between the solar wind
onset and proper magnetosphere response locations. With this
model, we can study the spatial evolution of the current system
as observed by multiple ground stations, and use it as a space
weather forecasting tool.
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