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Impossibility of calculating magnetic field change
from current disruption

V. M. Vasyli ūnas

Abstract: The picture of the substorm current wedge, formed by visualizing the cross-tail current as reduced or disrupted
and thus diverted through the ionosphere, provides a compact summary of the magnetic field changes observed during
substorms. There has long been a tendency, however, to view current disruption as an actual explanation, not just a
convenient representation, of the magnetic field changes — to search for some model by which first to predict the current
disruption and then, as a consequence, to calculate the magnetic field dipolarization from the Biot-Savart integral over the
reduced current. Formally, the time derivative of the magnetic field can be expressed as the Biot-Savart integral over the
time derivative of the current density, which in turn can be calculated in principle by summing all the forces (weighted
by charge/mass) on all the charged particles. In the resulting expression, the integrand includes an electric field term
which can be transformed (by means of an integration by parts) into curl E. Thus, the time derivative ofB cannot be
calculated directly from the Biot-Savart integral becauseone term in the integrand contains the time derivative itself, and
the contribution of that term is very large when the electroninertial length is small in comparison to the spatial scale
of the system; instead, the time derivative ofB must be calculated by solving what is now an integral equation. In the
limit of small electron inertial length, the solution reduces to the curl of all the terms other thanE; this is identical to
the method described by Vasyli ūnas [9, 10] for obtaining the time evolution ofB — determined directly by plasma
dynamics through the generalized Ohm’s law and not by the changing current (which cannot be calculated except as the
time derivative of curlB).
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1. Introduction

The notion that magnetic fields and their changes are to be
understood by reference to electric currents is deeply ingrained
in the thinking of many researchers on the magnetosphere. In
particular, the striking phenomenon known as dipolarization of
the magnetic field in the nightside magnetosphere, observedin
association with the substorm expansion, is widely interpreted
as the formation and evolution of an (inferred) substorm cur-
rent wedge (e.g. [5]): the cross-tail current is reduced over a
limited local time sector by having part of the current flow
down along magnetic field lines to the ionosphere, westward
across the ionosphere, and back up along the field lines. The
process is often referred to as an example of “current disrup-
tion,” and much of the modeling under that label would seem
to be aimed at predicting the formation and subsequent evolu-
tion of the current wedge, from which the dipolarization of the
magnetic field could then be deduced.

A basic presumption of such an approach is that Ampère’s
law

J =
c

4π
∇× B (1)

(I use Gaussian units throughout) determines the magnetic
field B given the current densityJ, with the further implicit
understanding that this holds for time variations as well: to
determine the time evolution ofB, one seeks first to specify
the time evolution ofJ. The contrary view, that Ampère’s law
determinesJ given∇ × B, has long been a familiar concept
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within magnetohydrodynamics [1, 2, 6, 8], where the time
evolution ofB is taken as determined by Faraday’s law

∂B

∂t
= −c∇× E (2)

with E given, in the simplest case, by the MHD (frozen-flux)
approximation in terms of the plasma bulk flow. The undeni-
able importance of non-MHD effects in some aspects of the
substorm process, however, has been invoked as an argument
for ignoring any MHD constraints.

In two recent papers [9, 10], I have examined the time evolu-
tion and interrelationships ofE,J, andB on the basis of the ex-
act fundamental equations and have shown that, providedE is
calculated from the full generalized Ohm’s law rather than just
the MHD approximation, the time evolution ofB is determined
by Faraday’s law (2), not by the time derivative of Ampère’s
law (1) (which serves instead to determine the time evolution
of J from that ofB), and that this (nominally large-scale) ap-
proach remains valid on space and time scales down to those
of electron plasma oscillations, thus extending well beyond the
range of MHD (generally considered no longer applicable once
scales as small as ion gyroperiod or ion inertial length are ap-
proached); it is limited ultimately by the breakdown of charge
quasineutrality, not of the frozen-flux approximation. Concern-
ing current disruption, I summarized the conclusion of [9] as
follows: “The results in the present paper imply that any such
theoretical model of dipolarization, in terms of the current as
the primary quantity, is not possible:on time scales appropri-
ate to substorm expansion, there is no equation from which
the time evolution of the current could be calculated, prior to
and independently of ∇× B. ...These limitations apply to any
attempts at accounting for changing magnetic fields by invok-
ing changing currents — current disruption, diversion, wedge
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formation, etc. Over the wide range of time scales from elec-
tron plasma period to Alfvén wave travel time, there simply
is no way to calculate the changing currents except by tak-
ing the curl of the changing magnetic fields; statements about
changes of current are not explanations but merely descriptions
of changes in the magnetic field.”

2. Evolution of electric current

Note that the above conclusion is a very specific one: within
the stated range of length and time scales, there is no usable
equation from which one could calculate the time evolution of
the current independently, i.e., other than from(∂/∂t)∇×B. It
is thus absolutely pointless, for anyone who wants to question
the conclusion, to talk about approaches or paradigms and to
invoke general arguments such as those in the controversy [6,
7, 8, 3, 4] on whether the magnetic field and the plasma flow or
the electric current and the electric field are to be treated as the
primary variables; rather, the only effective counterargument
is to write down what one claims to be the usable independent
equation for∂J/∂t.

An independent equation for∂J/∂t always exists, of course,
in principle: with the current density obtained by summing the
motions of all the charged particles, its time rate of change
can be determined by summing the accelerations of all the
charged particles. In terms of velocity distribution functions,
J is defined by

J =
∑

a

qa

∫

d3v vfa (v) (3)

wherefa(v) is the velocity distribution function of charged
particles of speciesa. The equation for time evolution ofJ
can then be calculated from the appropriate sum of velocity-
moment equations (see, e.g., [9] and references therein)

∂J

∂t
=

∑

a

{

q2ana

ma

(

E +
Va

c
× B

)

−
qa
ma

(∇ · κa) + qanag

}

+

(

δJ

δt

)

coll

(4)

whereqa, ma, na, Va, andκa are the charge, mass, concen-
tration, bulk velocity, and kinetic tensor, respectively,of spe-
ciesa, g is the gravitational acceleration (included here for
exactness but, as far as phenomena in the terrestrial magneto-
sphere are concerned, mostly not important in practice), and
(δJ/δt)coll represents the sum of all collision effects. Except
for being non-relativistic, equation (4) is exact, with no ap-
proximations.

The essential point demonstrated in [9] is that while equa-
tion (4) always holdsin principle, its left-hand side becomes
negligibly small in comparison to the individual terms on the
right-hand side, except when variations on space and time
scales at and below those of electron plasma oscillations are in-
volved; on all larger scales the equation is thusin practice not
usable for determining∂J/∂t. When small-scale variations are
important, they can be averaged over, and equation (4) can be

transformed into the corresponding equation for the time evol-
ution of the averagedJ (expressed in terms of average quantit-
ies and fluctuation correlations):

∂〈J〉

∂t
=

∑

a

{

q2a〈na〉

ma

(

〈E〉 +
〈Va〉

c
× 〈B〉

)

+
q2a
ma

(

〈δnaδE〉 + 〈
δ (naVa)

c
× δB〉

)

(5)

−
qa
ma

∇ · 〈κa〉 + qa〈na〉g

}

+ 〈

(

δJ

δt

)

coll

〉 .

Equation (5) is still exact (except for being non-relativistic)
and in particular doesnot presuppose any small-amplitude or
quasilinear approximation (as long as the average moments are
properly defined as moments of the averaged distribution func-
tion [9]).

It is convenient to rewrite (5) in a simplified notation as

∂〈J〉

∂t
=
ωp

2

4π
(〈E〉 − 〈E∗〉) (6)

where the effective electron plasma frequencyωp is defined by

ωp
2 ≡ 4π

∑

a

q2a〈na〉

ma
≈

4πnee
2

me
(7)

and−〈E∗〉 represents the sum of all the terms on the right-
hand side other than〈E〉; this is purely a matter of notation
and does not presuppose any restrictions.

3. Evolution of magnetic field

The following argument can be (and has been) made: regard-
less of any conclusions in [9] about orders of magnitude and
small-scale fluctuations, equations (4) and (5) do represent,
formally at least, the time evolution of the current density, so
why can they not be used to calculate the time evolution of the
magnetic field? Equation (4) includes all space and time scales
(including those that may be considered too small to be of in-
terest) and describes, strictly speaking, every individual plasma
oscillation, but if that is perceived as a problem, then the aver-
aged equation (5) can always be used instead. I consider now
the consequences of applying this seemingly straightforward
procedure.

3.1. Application of Biot-Savart law
Solved forB in terms ofJ, Ampère’s law (1) yields the

Biot-Savart integral

B(r, t) =
1

c

∫

d3r′ J(r′, t) ×
r− r′

|r − r′|3
(8)

which, by a simple integration by parts, can be rewritten in the
form

B(r, t) =
1

c

∫

d3r′
∇′ × J(r′, t)

|r − r′|
(9)

(∇′ = gradient with respect to the coordinate vectorr′). Dif-
ferentiating with respect to time gives

∂B(r, t)

∂t
=

1

c

∫

d3r′
∂J(r′, t)

∂t
×

r − r′

|r − r′|3
(10)
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or equivalently

∂B(r, t)

∂t
=

1

c

∫

d3r′
∇′ × ∂J(r′, t)/∂t

|r − r′|
(11)

and the idea is to calculate∂B/∂t by using (5) for∂J/∂t
within the integrals. (It is taken for granted that the time vari-
ations of interest here occur on scales long compared to light
travel times; hence the neglect of the displacement currentterm
in Ampère’s law and consequently of time retardation in thein-
tegrals.)

Substituting∂J/∂t from (5) and invoking Faraday’s law (2)
to evaluate∇× E transforms the Biot-Savart integral (11) for
∂B/∂t into

∂B(r, t)

∂t
= −

∫

d3r′
∂B(r′, t)/∂t+ ∇′ × cE∗(r′, t) − ∆

4πλe
2|r − r′|

∆ ≡ (∇′ne/ne) × c(E − E∗) (12)

where

λe ≡ c/ωp = 5 km (1 cm−3/ne)
1/2 (13)

is the electron inertial length (also known as the collisionless
skin depth). The difficulty is now apparent:∂B/∂t cannot be
calculated simply by evaluating the integral in (12) because the
integrand contains∂B/∂t itself as one of the terms. Nor can
this term be considered as a small correction: the order of mag-
nitude of the integral over∂B/∂t on the right-hand side, com-
pared to the term∂B/∂t on the left-hand side, isO(L/λe)

2,
whereL is the spatial scale of the system. Equation (12) must
in fact be viewed as an integral equation for∂B/∂t, not just a
plain integral.

3.2. Large-scale limit
The integral equation (12) can be solved explicitly for

∂B/∂t if λe varies only on a spatial scale large compared to
itself (λe � L); to lowest order inλe/L,

∂B(r, t)

∂t
= −

∫

d3r′ exp

{

−|r− r′|

λe

}

∇′ × cE∗(r′, t)

4πλe
2|r − r′|

(14)

(the term∆ in (12) has been neglected, as it can be shown to
be of order(λe/L)2 in comparison to the others). The solution
(14) is most readily derived by transforming the integral equa-
tion (12) back into a differential form by making use of the fact
that the Green’s functionψ = 1/|r− r′| is a solution of

∇2ψ = −4π δ (r − r′) (15)

and then placing all the∂B/∂t terms in the consequent dif-
ferential equation on its left-hand side, with the result that the
Green’s function is now a solution of

∇2ψ −
ψ

λe
2

= −4π δ (r − r′) (16)

instead of (15); ifλe can be treated (locally at least) as a con-
stant, the solution of (16) is the well-known Debye or Yukawa
potential. Alternatively, the differential form of the equation

for ∂B/∂t can be obtained directly from the curl of the time
derivative of Ampère’s law (1), with the use of (5) and (2).

Equation (14) expresses∂B/∂t as a straightforward integral
(one that no longer contains∂B/∂t itself in the integrand). It
differs from (12) also in the form of the kernel (Green’s func-
tion): the Coulomb potential in (12) has been replaced in (14)
by a potential of the Debye form (but note that the shielding
distance here is the electron inertial lengthλe, not the Debye
length).

Changing the variable of integration fromr′ to s with
r′ ≡ r + λes and writing the integral overs in spherical co-
ordinates finally gives

∂B(r, t)

∂t
= −

∫

dΩ

4π

∫

∞

0

s ds e−s∇× cE∗(r + λes, t). (17)

In the limit λe � L this reduces to

∂B(r, t)

∂t
≈ −∇× cE∗(r, t) (18)

which is equivalent to

∂B

∂t
= −c∇× E with 0 = E− E∗ (19)

But this is precisely the method of calculating the time evolu-
tion of B arrived at in [9, 10]: on length scales� λe and time
scales� 1/ωp, the electric field is determined by plasma dy-
namics via the generalized Ohm’s law (neglecting the∂J/∂t
term), and the evolution of the magnetic field is then determ-
ined, via Faraday’s law, directly by the curl of the electricfield.
There is no longer any direct reference to the electric current
density, which is determined — and this is now the only role
of Ampère’s law — by the curl of the magnetic field.

4. Conclusion

The presence of a large concentration of free charged
particles (particularly electrons) in a plasma means that an
electric field can, by accelerating positive and negative charges
in opposite directions, very quickly and efficiently changethe
electric current density — unless other forces (e.g. magnetic
forces or pressure gradients) counteract this differential accel-
eration. What constitutes a “large” concentration in this context
is defined precisely by the value ofne implied by the condition
λe � L: when this condition is satisfied, a very large current
density can result from even a small differential acceleration
of positive and negative particles, with the result that theelec-
tric field must be determined largely by the requirement that
the differential acceleration remain sufficiently close tozero.
This is the basic reason why the time evolution of the current
cannot be specified independently of and logically prior to the
time evolution of the magnetic field: if the change of currentis
assumed to be specified somehow, then Ampère’s law implies
a change of the magnetic field, which by Faraday’s law must
be accompanied by a (non-curl-free) electric field, which im-
plies in turn a change of current, much larger than (and hence
inconsistent with) that assumed initially.

Here I have demonstrated this inconsistency by an explicit
calculation: in order to obtain the time derivative of the mag-
netic field, insert the changing current density, deduced from
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the forces acting on all the charged particles, into the time
derivative of the Biot-Savart integral. Depending on how one
handles the mathematics, there are two possible results. Either,
if the integral is simply evaluated as given, one finds that the
time evolution of the magnetic field cannot be calculated at
all unless it is known already (and known indeed to a much
higher precision,� O(λe/L)2, than that of the result to be
calculated). Or else, if the appropriate mathematical manipula-
tions are carried out, onecan obtain the time evolution of the
magnetic field, but (one finds) it is actually being calculated
from the changes in the balance (described by the generalized
Ohm’s law) between the electric field and the plasma flows and
stresses: even though the Biot-Savart integral was taken asthe
starting point, the final formula arrived at for the time deriv-
ative of the magnetic field gives it directly as minus the curl
of the electric field derived from the generalized Ohm’s law,
not as the integrated magnetic effect of any specified varying
currents.
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